Improving Simultaneous Cooling and Power Load-Following Capability for MGT-CCP Using Coordinated Predictive Controls

Author:

Chen Chen,Lin Jiangfan,Pan Lei,Lee Kwang,Sun LiORCID

Abstract

The distributed energy system is an energy supply method built around the end users, which can achieve energy sustainability and reduce emissions compared to traditional centralized energy systems. The micro gas turbine (MGT)-based combined cooling and power (CCP) system has received renewed attention as an important distributed energy system technology due to its substantial energy savings and reduced emission levels. The task of the MGT-CCP system is to quickly adapt to changes in various renewable energy sources to maintain the balance in energy supply and demand in a distributed energy system. Therefore, it is imperative to improve the load tracking capability of the MGT-CCP system with advanced control technologies toward achieving this goal. However, the difficulty of controlling the MGT-CCP system is that the MGT responds very fast while CCP responds very slowly. To this end, the dynamic characteristics and nonlinear distribution of the MGT and CCP processes are analyzed, and a coordinated predictive control strategy is proposed by utilizing the generalized predictive control for the MGT system and the Hammerstein generalized predictive control for the CCP system. The coordinated predictive control of generalized predictive control and Hammerstein generalized predictive control was implemented in an 80 kW MGT-CCP simulator to verify the effectiveness of the proposed method. The simulation results show that compared with PID and MPC, the proposed control method not only can greatly improve simultaneous cooling and power load-following capability, but also has the best control effect when accessing with renewable energy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3