Dietary Tomato Pectin Attenuates Hepatic Insulin Resistance and Inflammation in High-Fat-Diet Mice by Regulating the PI3K/AKT Pathway

Author:

Sun Jing12,Wu Kongyan12,Wang Pan2,Wang Yubin2,Wang Dan2,Zhao Wenting2,Zhao Yuanyuan2,Zhang Chunhong1,Zhao Xiaoyan2

Affiliation:

1. College of Food Science, Shenyang Agricultural University, Shenyang 110866, China

2. Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China

Abstract

Chronic metabolic disease is a serious global health issue, which is accompanied by impaired insulin resistance. Tomato pectin (TP) is a naturally soluble complex hetero-polysaccharide with various biological functions. However, the impact of TP on hepatic insulin resistance in a high-fat diet (HFD) and its potential mechanism remains largely unknown. The results revealed that TP treatment significantly decreased the liver weight, hepatic fat accumulation and hepatic injury in HFD-fed mice. TP also improved fasting blood glucose levels and glucose tolerance in HFD-fed mice. The underlying mechanisms involved in the inflammation, oxidative stress and insulin signaling in the liver were also investigated by RT-qPCR and western blot, which indicated that TP ameliorated hepatic insulin resistance by regulating the PI3K/AKT/GSK-3β pathway, increasing the expression of GLUT4, decreasing the expression of PECK and G6P as well as restoring antioxidant activities and suppressing the inflammation statues in HFD-fed mice. Our data showed that dietary TP has profound effects on hepatic insulin resistance, inflammation and oxidative stress, demonstrating that TP might be a promising therapeutic agent against insulin resistance and related chronic metabolic disease.

Funder

National Natural Science Foundation of China

Excellent Young Scientist Fund of Beijing Academy of Agricultural and Forestry Sciences

Young Investigator Fund of Beijing Academy of Agricultural and Forestry Sciences

Young Talen Award of Beijing Academy of Agricultural and Forestry Sciences

Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences

Scientific and Technological Innovation Ability Foundation of Beijing Academy of Agricultural and Forestry Sciences

China Agriculture Research System of MOF and MRAR

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3