SVR Chemometrics to Quantify β-Lactoglobulin and α-Lactalbumin in Milk Using MIR

Author:

Babatunde Habeeb Abolaji1ORCID,Collins Joseph2,Lukman Rianat3,Saxton Rose3,Andersen Timothy1,McDougal Owen M.3ORCID

Affiliation:

1. Computer Science, Boise State University, Boise, ID 83725, USA

2. Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA

3. Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA

Abstract

Protein content variation in milk can impact the quality and consistency of dairy products, necessitating access to in-line real time monitoring. Here, we present a chemometric approach for the qualitative and quantitative monitoring of β-lactoglobulin and α-lactalbumin, using mid-infrared spectroscopy (MIR). In this study, we employed Hotelling T2 and Q-residual for outlier detection, automated preprocessing using nippy, conducted wavenumber selection with genetic algorithms, and evaluated four chemometric models, including partial least squares, support vector regression (SVR), ridge, and logistic regression to accurately predict the concentrations of β-lactoglobulin and α-lactalbumin in milk. For the quantitative analysis of these two whey proteins, SVR performed the best to interpret protein concentration from 197 MIR spectra originating from 42 Cornell University samples of preserved pasteurized modified milk. The R2 values obtained for β-lactoglobulin and α-lactalbumin using leave one out cross-validation (LOOCV) are 92.8% and 92.7%, respectively, which is the highest correlation reported to date. Our approach introduced a combination of preprocessing automation, genetic algorithm-based wavenumber selection, and used Optuna to optimize the framework for tuning hyperparameters of the chemometric models, resulting in the best chemometric analysis of MIR data to quantitate β-lactoglobulin and α-lactalbumin to date.

Funder

National Dairy Council

National Science Foundation Convergence Accelerator Track J Award

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3