The Shelf Life of Milk—A Novel Concept for the Identification of Marker Peptides Using Multivariate Analysis

Author:

Class Lisa-Carina12ORCID,Kuhnen Gesine13ORCID,Hanisch Kim Lara1,Badekow Svenja1,Rohn Sascha3ORCID,Kuballa Jürgen1ORCID

Affiliation:

1. GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany

2. Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany

3. Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Abstract

The quality of food is influenced by several factors during production and storage. When using marker compounds, different steps in the production chain, as well as during storage, can be monitored. This might enable an optimum prediction of food’s shelf life and avoid food waste. Especially, proteoforms and peptides thereof can serve as indicators for exogenous influences. The development of a proteomics-based workflow for detecting and identifying differences in the proteome is complex and time-consuming. The aim of the study was to develop a fast and universal workflow with ultra-high temperature (UHT) milk as a proteinaceous model food with expectable changes in protein/peptide composition. To find an optimum shelf life without sticking to a theoretically fixed best-before date, new evaluation and analytical methods are needed. Consequently, a modeling approach was used to monitor the shelf life of the milk after it was treated thermally and stored. The different peptide profiles determined with high-resolution mass spectrometry (HRMS) showed a significant difference depending on the preparation method of the samples. Potential marker peptides were determined using orthogonal projections to latent structures discriminant analysis (OPLSDA) and principal component analysis (PCA) following a typical proteomics protocol with tryptic hydrolysis. An additional Python-based algorithm enabled the identification of eight potential tryptic marker peptides (with mass spectrometric structural indications m/z 885.4843, m/z 639.3500, m/z 635.8622, m/z 634.3570, m/z 412.7191, m/z 623.2967, m/z 880.4767, and m/z 692.4041), indicating the effect of the heat treatment. The developed workflow is flexible and can be easily adapted to different research questions in the field of peptide analysis. In particular, the process of feature identification can be carried out with significantly less effort than with conventional methods.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3