Adaptation of a Commercial Qualitative BAX® Real-Time PCR Assay to Quantify Campylobacter spp. in Whole Bird Carcass Rinses

Author:

Bodie Aaron R.1,Dittoe Dana K.2ORCID,Applegate Savannah F.3ORCID,Stephens Tyler P.3,Ricke Steven C.1ORCID

Affiliation:

1. Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA

2. Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA

3. Hygiena, 2 Boulden Circle, New Castle, DE 19720, USA

Abstract

Poultry is the primary reservoir of Campylobacter, a leading cause of gastroenteritis in the United States. Currently, the selective plating methodology using selective agars, Campy Cefex and Modified Charcoal Cefoperazone Deoxycholate agar, is preferentially used for the quantification of Campylobacter spp. among poultry products. Due to the specific nature of Campylobacter, this methodology is not sensitive, which can lead to skewed detection and quantification results. Therefore, Campylobacter detection and quantification methods are urgently needed. The objective was to develop a shortened enrichment-based quantification method for Campylobacter (CampyQuant™) in post-chill poultry rinsates using the BAX® System Real-Time PCR assay for Campylobacter. The specificity and sensitivity for the detection of C. jejuni, C. coli, and C. lari in pure culture were determined. The BAX® System Real-Time PCR assay consistently detected and identified each species 100% of the time with an enumeration range of 4.00 to 9.00 Log10 CFU/mL. Enrichment time parameters for low-level concentrations (0.00, 1.00, and 2.00 Log10 CFU/mL) of Campylobacter using the BAX® System Real-Time PCR assay were elucidated. It was determined that an enrichment time of 20 h was needed to detect at least 1.00 Log10 CFU/mL of Campylobacter spp. Using the BAX® System Real-Time PCR assay for Campylobacter. As a result, time of detection, detection limits, and enrichment parameters were used to develop the CampyQuant™ linear standard curve using the detected samples from the BAX® System Real-Time PCR assay to quantify the levels in post-chill poultry rinsates. A linear fit equation was generated for each Campylobacter species using the cycle threshold from the BAX® System Real-Time PCR assay to estimate a pre-enrichment of 1.00 to 4.00 Log10 CFU/mL of rinsates detected. The statistical analyses of each equation yielded an R2 of 0.93, 0.76, and 0.94 with a Log10 RMSE of 0.64, 1.09, and 0.81 from C. jejuni, C. coli, and C. lari, respectively. The study suggests that the BAX® System Real-Time PCR assay for Campylobacter is a more rapid, accurate, and efficient alternative method for Campylobacter enumeration.

Funder

Hygiena LLC

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3