Multi-Timeframe Forecasting Using Deep Learning Models for Solar Energy Efficiency in Smart Agriculture

Author:

Venkatesan Saravanakumar1ORCID,Cho Yongyun1

Affiliation:

1. Department of Information and Communications Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea

Abstract

Since the advent of smart agriculture, technological advancements in solar energy have significantly improved farming practices, resulting in a substantial revival of different crop yields. However, the smart agriculture industry is currently facing challenges posed by climate change. This involves multi-timeframe forecasts for greenhouse operators covering short-, medium-, and long-term intervals. Solar energy not only reduces our reliance on non-renewable electricity but also plays a pivotal role in addressing climate change by lowering carbon emissions. This study aims to find a method to support consistently optimal solar energy use regardless of changes in greenhouse conditions by predicting solar energy (kWh) usage on various time steps. In this paper, we conducted solar energy usage prediction experiments on time steps using traditional Tensorflow Keras models (TF Keras), including a linear model (LM), Convolutional Neural Network (CNN), stacked—Long Short Term Memory (LSTM), stacked-Gated recurrent unit (GRU), and stacked-Bidirectional—Long Short —Term Memory (Bi-LSTM), as well as Tensor-Flow-based models for solar energy usage data from a smart farm. The stacked-Bi-LSTM outperformed the other DL models with Root Mean Squared Error (RMSE) of 0.0048, a Mean Absolute Error (MAE) of 0.0431, and R-Squared (R2) of 0.9243 in short-term prediction (2-h intervals). For mid-term (2-day) and long-term (2-week) forecasting, the stacked Bi-LSTM model also exhibited superior performance compared to other deep learning models, with RMSE values of 0.0257 and 0.0382, MAE values of 0.1103 and 0.1490, and R2 values of 0.5980 and 0.3974, respectively. The integration of multi-timeframe forecasting is expected to avoid conventional solar energy use forecasting, reduce the complexity of greenhouse energy management, and increase energy use efficiency compared to single-timeframe forecasting models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3