Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data

Author:

Kasmi Gabriel12ORCID,Touron Augustin2ORCID,Blanc Philippe1ORCID,Saint-Drenan Yves-Marie1ORCID,Fortin Maxime2,Dubus Laurent23ORCID

Affiliation:

1. MINES Paris, Université PSL Centre Observation Impacts Energie (O.I.E.), 06904 Sophia-Antipolis, France

2. Direction de la Recherche et du Développement, RTE France, 92073 Paris La Défense, France

3. WEMC (World Energy & Meteorology Council), Norwich NR4 7TJ, UK

Abstract

The global photovoltaic (PV) installed capacity, vital for the electric sector’s decarbonation, reached 1552.3 GWp in 2023. In France, the capacity stood at 19.9 GWp in April 2024. The growth of the PV installed capacity over a year was nearly 32% worldwide and 15.7% in France. However, integrating PV electricity into grids is hindered by poor knowledge of rooftop PV systems, constituting 20% of France’s installed capacity, and the lack of measurements of the production stemming from these systems. This problem of lack of measurements of the rooftop PV power production is referred to as the lack of observability. Using ground-truth measurements of individual PV systems, available at an unprecedented temporal and spatial scale, we show that by estimating the PV power production of an individual rooftop system by combining solar irradiance and temperature data, the characteristics of the PV system inferred from remote sensing methods and an irradiation-to-electric power conversion model provides accurate estimations of the PV power production. We report an average estimation error (measured with the pRMSE) of 10% relative to the system size. Our study shows that we can improve rooftop PV observability, and thus its integration into the electric grid, using little information on these systems, a simple model of the PV system, and weather data. More broadly, this study shows that limited information is sufficient to derive a reasonably good estimation of the PV power production of small-scale systems.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Reference56 articles.

1. Terawatt-scale photovoltaics: Trajectories and challenges;Haegel;Science,2017

2. IEA (2023). Renewable Energy Statistics 2022, IRENA. Technical report.

3. (2024, July 04). RTE France, Bilan électrique 2023, Available online: https://analysesetdonnees.rte-france.com/bilan-electrique-2023/synthese.

4. RTE France, and IEA (2021). Conditions and Requirements for the Technical Feasibility of a Power System with a High Share of Renewables in France Towards 2050, RTE France. Technical report.

5. Pierro, M., Liolli, F.R., Gentili, D., Petitta, M., Perez, R., Moser, D., and Cornaro, C. (2022). Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3