Short-Term Precipitation Radar Echo Extrapolation Method Based on the MS-DD3D-RSTN Network and STLoss Function

Author:

Yang Wulin1,Yang Hao1ORCID,Zhou Hang1,Dong Yuanchang2ORCID,Zhang Chenghong2,Chen Chaoping3

Affiliation:

1. School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

2. Heavy Rain and Drought-Flood Disaster in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Plateau Meteorology, China Meteorological Administration (CMA), Chengdu 610072, China

3. Sichuan Meteorological Observatory, Chengdu 610071, China

Abstract

Short-term precipitation forecasting is essential for agriculture, transportation, urban management, and tourism. The radar echo extrapolation method is widely used in precipitation forecasting. To address issues like forecast degradation, insufficient capture of spatiotemporal dependencies, and low accuracy in radar echo extrapolation, we propose a new model: MS-DD3D-RSTN. This model employs spatiotemporal convolutional blocks (STCBs) as spatiotemporal feature extractors and uses the spatial-temporal loss (STLoss) function to learn intra-frame and inter-frame changes for end-to-end training, thereby capturing the spatiotemporal dependencies in radar echo signals. Experiments on the Sichuan dataset and the HKO-7 dataset show that the proposed model outperforms advanced models in terms of CSI and POD evaluation metrics. For 2 h forecasts with 20 dBZ and 30 dBZ reflectivity thresholds, the CSI metrics reached 0.538, 0.386, 0.485, and 0.198, respectively, representing the best levels among existing methods. The experiments demonstrate that the MS-DD3D-RSTN model enhances the ability to capture spatiotemporal dependencies, mitigates forecast degradation, and further improves radar echo prediction performance.

Funder

National Key Research and Development Program of China

Smart Grid Forecast Innovation Team Fund of the Sichuan Meteorological Administration

Publisher

MDPI AG

Reference54 articles.

1. Preciplstm: A meteorological spatiotemporal lstm for precipitation nowcasting;Ma;IEEE Trans. Geosci. Remote Sens.,2022

2. Skilful precipitation nowcasting using deep generative models of radar;Ravuri;Nature,2021

3. Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J. (2019). Machine learning for precipitation nowcasting from radar images. arXiv.

4. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021;Chyi;J. Appl. Meteorol. Sci,2022

5. Douris, J., and Kim, G. (2021). The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019), WMO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3