Development of Ultrasound Piezoelectric Transducer-Based Measurement of the Piezoelectric Coefficient and Comparison with Existing Methods

Author:

Ravikumar Chandana1ORCID,Markevicius Vytautas1

Affiliation:

1. Department of Electrical Engineering, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Student Street 50-438, LT-51365 Kaunas, Lithuania

Abstract

Energy harvesting using the piezoelectric material in the development of compact vibration energy harvesters can be used as a backup power source for wireless sensors or to fully replace the use of fossil-resource-wasting batteries and accumulators to power a device or sensor. Generally, the coefficient is used as the metric for evaluating the property in materials. Recent research reports that accurate measurement and calculation of the coefficient in materials, especially in polymers, can be challenging for various reasons. From the reviewed references, different methods, including the quasi-static, dynamic, interferometric, and acoustic methods, are discussed and compared based on the direct and indirect effect, accuracy, repeatability, frequency range, and so on. A development of an ultrasound piezoelectric transducer is conducted to estimate d33 coefficient with a reference value. The purpose of the method was mainly to measure the values of piezoelectric material in order to measure the efficiency of the poling process in piezoelectric materials. The test setup described in this study allowed for the effective measurement of the d33 factor of piezoelectric materials using a 1.4 MHz PZT ultrasonic piezoelectric transducer. The arrangement of the components, including the use of organic glass, copper, and aluminum electrodes, ensured accurate and reliable measurements. This setup can be valuable for various applications requiring the characterization of piezoelectric materials and for understanding their behavior under specific conditions. The advantages and challenges in this method are discussed and compared with existing works.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subzero temperatures and low-frequency impact on MFC piezoelectric transducers for wireless sensor applications;Eksploatacja i Niezawodność – Maintenance and Reliability;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3