A Phase Error Correction System for Bioimpedance Measurement Circuits

Author:

Nwokoye Ifeabunike I.1ORCID,Triantis Iasonas F.1ORCID

Affiliation:

1. Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK

Abstract

Bioimpedance sensing is widely used across a spectrum of biomedical applications. Among the different system architectures for measuring tissue impedance, synchronous detection or demodulation (SD) stands out for its lock-in amplifier utilising in-phase (I) and quadrature (Q) demodulation signals to derive real and imaginary impedance components. Typically, the current injected into the tissue is controlled by a voltage-controlled current source (VCCS). However, the VCCS can introduce phase shifts leading to discrepancies in real/imaginary outputs, especially at the highest end of the operating frequency bandwidth. Such discrepancies can significantly impact diagnostic accuracy in applications reliant on precise tissue phase profiling, such as cancer and neuromuscular evaluations. In the present work, we propose an automatic phase error compensation stage for bioimpedance measurement systems to minimise this systematic error. Our experimental findings demonstrated a considerable reduction in phase error, with the Phase Error Compensated Synchronous Detection (PECSD) system exhibiting a maximum phase error of 2° (≤5% error) compared with the uncompensated SD system where error exceeded 20%. The improvements made by our proposed SD system hold great potential for enhancing the accuracy of impedance measurements, particularly in clinical diagnosis and disease detection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3