Visualization of Demodulated Sound Based on Sequential Acoustic Ray Tracing with Self-Demodulation in Parametric Array Loudspeakers

Author:

Geng Yuting1ORCID,Shimokata Makoto1,Nakayama Masato2,Nishiura Takanobu1ORCID

Affiliation:

1. College of Information Science and Engineering, Ritsumeikan University, Osaka 567-8570, Japan

2. Faculty of Design Technology, Osaka Sangyo University, Osaka 574-8530, Japan

Abstract

With the development of acoustic simulation methods in recent decades, it has become feasible to simulate the sound pressure distribution of loudspeakers before actually setting physical speakers and measuring the sound field. The parametric array loudspeaker (PAL) has attracted attention due to its sharp directivity and unique applications. However, the sound reproduced by PALs is generated by the nonlinear interactions of ultrasound in the air, which makes it difficult to simulate the reproduced sound of a PAL with low computational load. Focusing on the sharp directivity of ultrasound, we extended conventional acoustic ray-tracing methods to consider the self-demodulation phenomenon of PALs. In this study, we developed a visualization method for the demodulated sound of a PAL. Specifically, the demodulated sound pressure distribution can be simulated to estimate and visualize the area covered by the reproduced sound of PAL before setting a real PAL. In the proposed method, acoustic rays were generated sequentially to express the generation of demodulated sound. Therefore, the proposed method is expected to simulate the demodulated sound of a PAL with acceptable accuracy and low calculation complexity. Quantitative evaluation between simulation results and practical measurement has been carried out, and the results demonstrate the effectiveness of the proposed method.

Funder

Ritsumeikan University R-GIRO

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3