Multi-Objective Optimization of Bogie Stability for Minimum Radius Curve of Battery Track Engineering Vehicle

Author:

Shen Yang1,Zhao Jiayi1,Wang Chongyu1,Zhou Minggang1

Affiliation:

1. Hubei Agricultural Machinery Institute, Hubei University of Technology, Wuhan 430068, China

Abstract

A battery track engineering vehicle faces challenges such as derailment and other safety concerns when navigating an R20m minimum radius curve, primarily owing to its low vertical and horizontal stabilities. To address these issues, a methodology integrating genetic optimization algorithms with a rigid and flexible coupled multi-body dynamics simulation is proposed to optimize the primary suspensions of the bogie of the vehicle. Initially, a multi-objective optimization model combining rigid and flexible coupled multi-body dynamics of battery track engineering vehicles with a genetic optimization algorithm was formulated. Subsequently, the optimal Latin hypercube design was applied to analyze the sensitivity of vertical and horizontal stability to various suspension parameters. Finally, a non-dominated sorting genetic algorithm (NSGA-II) and an archive-based micro genetic algorithm (AMGA) were applied to optimize the primary suspensions to enhance stability. Consequently, a set of optimal suspension parameter combinations was obtained. A notable enhancement was observed in the lateral stability of the optimized battery track engineering vehicles by 23.33% and in the vertical stability by 3.5% when traversing the R20m minimum radius curve, thereby establishing a theoretical foundation for further improving the running safety of railway vehicles and resolving the shortcomings of less research on the smallest radius curve.

Funder

Hubei Province, a major project of the Indian broad gauge ballast shaping car key technology research and manufacturing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3