Investigation on Deformation Behavior in the Surface of Metal Foil with Ultrasonic Vibration-Assisted Micro-Forging

Author:

Yin Zidong,Yang Ming

Abstract

Excitation of the acoustic field, leading to the Blaha effect, significantly affects the plasticity of a material. In the micro-forming field, the so-called impact effect is found to generate a larger amount of dislocation and produce greater plastic deformation than acoustic softening. In this study, the mechanism of deformation in the surface of the material with ultrasonic vibration assistance was investigated and compared with that in the bulk. Forging tests using a newly developed ultrasonic vibrator were carried out on pure Cu foils with various process conditions. The longitudinal vibration frequency of the ultrasonic transducer was 60 ± 2 kHz, and the vibration amplitude was in an adjustable range of 0~6 μm. Forging tests were carried out at different amplitudes. The result shows that acoustic softening and the impact effect could be separated by an oscilloscope in the micro-forging system. The difference in deformation on the surface asperity caused by acoustic softening and the impact effect is discussed. Compared to acoustic softening, which has a limited effect on the deformation of the surface asperity, the impact effect could create more plastic deformation on the surface asperity. Therefore, the reduction in the surface roughness would increase after the impact effect occurs. In addition, to confirm the mechanism of acoustic softening and the impact effect, the microstructural evolution of specimens, at the surface scale and inner scale, was investigated by electron backscatter diffraction (EBSD). It was found that acoustic softening could create more grain refinement, and with the amplitude increasing, the impact effect would oppositely cause the surface grains to grow. In this study, the mechanism of how the impact effect and acoustic softening affect the deformation behavior of the surface asperity was investigated.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3