Simulation Analysis and Process Evaluation of Cooling Hole Forming Precision in Mask Assisted Electrochemical Machining Based on GH4169

Author:

Li ZhaolongORCID,Dai Ye

Abstract

Good heat dissipation performance of aero-engine an effectively improve the service performance and service life of aero-engine. Therefore, this paper studies the machining method of cooling holes of high-temperature existent material GH 4169 for aero-engine innovatively puts forward the mask electrochemical machining method of cooling holes and explores the entrance morphology and taper formation law of the hole structure of high-temperature resistant material GH 4169. The mathematical model of anode dissolution of cooling holes in ECM is established, and the influence of voltage and electrolyte flow rate on cooling holes in ECM is analyzed. Compared with the mask-less electrochemical machining, the inlet radius of cooling holes in mask electrochemical machining is reduced by about 16.0% and the taper is reduced by 52.8% under the same machining parameters, which indicates that the electrochemical machining efficiency of mask is higher and the machining accuracy is better. Experiments show that the diameter of the mask structure improves the accuracy of the inlet profile of the cooling hole in the ECM. The diameter of the mask increases from 2 mm to 2.8 mm, and the inlet radius of the cooling hole increased from 1.257 mm to 1.451 mm When the diameter of the mask is 2.2 mm, the taper of the cooling hole decreased by 53.4%. The improvement effect is best, and the thickness of the mask has little influence on the forming accuracy of the cooling hole.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3