Metabolic Conversions by Lactic Acid Bacteria during Plant Protein Fermentations

Author:

Engels Wim,Siu Jamie,van Schalkwijk Saskia,Wesselink Wilma,Jacobs Simon,Bachmann Herwig

Abstract

To secure a sustainable food supply for the rapidly growing global population, great efforts towards a plant-based diet are underway. However, the use of plant proteins comes with several challenges, such as improvement or removal of undesired flavours, and generation of desired texture properties. Fermentation holds large potential to alter these properties, but compared to dairy fermentations, our knowledge on strain properties in different plant-based substrates is still limited. Here, we explored different lactic acid bacteria for their ability to grow, produce flavour compounds, or remove off-flavour compounds from different plant proteins. For this, 151 LAB strains from dairy and non-dairy origins were cultured in plant protein plus coconut oil emulsions supplemented with glucose. Pea, chickpea, mung, fava, and soybean proteins were used in the study and bacterial strains for screening included the genera Streptococcus, Lactococcus, Lactobacillus, and Leuconostoc. Efficient, high throughput, screening on plant proteins was developed and strains were assessed for their ability to (i) acidify and decrease the pH; (ii) express key enzymes involved in the formation of amino acid derived flavours, which included PepN (aminopeptidase N), PepXP (X-prolyl dipeptidyl peptidase), EstA (esterase), BcAT (branched chain aminotransferase), CBL (cystathione beta lyase), and ArAT (aromatic aminotransferase); and (iii) improve the overall aroma profile by generating dairy/cheesy notes and decreasing off flavours. Suitable screening conditions were determined, and highlighted the importance that a sufficient heat treatment must be applied to samples containing plant proteins, prior to fermentation, as an outgrowth of spore forming Bacillus cereus was observed if the material was only pasteurised. Enzyme activities for strains measured in rich broth vs. a buffered protein solution showed little-to-no correlation, which illustrated the importance of screening conditions to obtain predictive enzyme measurements. Aroma formation analysis allowed to identify strains that were able to increase key aromas such as diacetyl, acetoin, 2- and 3-methyl butanol, and 2,3-pentanedione, as well as decrease the off-flavours hexanal, pentanal, and nonanal. Our findings illustrate the importance of strain specific differences in the assessed functionalities and how a methodical approach to screening LAB can be applied to select suitable microorganisms that show promise in fermentation of plant proteins when applied in non-dairy cheese applications.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3