Affiliation:
1. Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
Abstract
Metformin is the first-line medication for treating type 2 diabetes mellitus, with more than 200 million patients taking it daily. Its effects are extensive and play a positive role in multiple areas. Can its effects and potential mechanisms be explored through the urine proteome? In this study, 166 differential proteins were identified following the administration of 150 mg/(kg·d) of metformin to rats for five consecutive days. These included complement component C6, pyruvate kinase, coagulation factor X, growth differentiation factor 15, carboxypeptidase A4, chymotrypsin-like elastase family member 1, and L-lactate dehydrogenase C chain. Several of these proteins have been reported to be directly affected by metformin or associated with its effects. Multiple biological pathways enriched by these differential proteins, or proteins containing differentially modified peptides, have been reported to be associated with metformin, such as the glutathione metabolic process, negative regulation of gluconeogenesis, and the renin–angiotensin system. Additionally, some significantly changed proteins and enriched biological pathways, not yet reported to be associated with metformin’s effects, may provide clues for exploring its potential mechanisms. In conclusion, the application of the urine proteome offers a comprehensive and systematic approach to exploring the effects of drugs, providing a new perspective on the study of metformin’s mechanisms.
Funder
the National Key R&D Program of China
the Beijing Natural Science Foundation
the Beijing Normal University