Abstract
Mesoscale simulation using the material point method (MPM) was conducted to study the pressure–volume (PV) variations of Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX)/Estane polymer-bonded explosive (PBX) under impact loading. The PV isotherms and Hugoniot data were calculated for the different porosities and binder volume fractions. The PV isotherms were used to determine the parameters for the Birch– Murnaghan equation of state (EOS) for the PBX. From the EOS, the isothermal bulk modulus (K0) and its pressure derivative (K′0) were calculated. Additionally, the pseudo particle velocity and pseudo shock velocity variations were used to obtain the bulk wave speed c and dimensionless coefficient s for the Mie–Grüneisen EOS. The simulations provide an alternative approach for determining an EOS that is consistent with experimental observations.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献