Facile Fabrication of Nickel Supported on Reduced Graphene Oxide Composite for Oxygen Reduction Reaction

Author:

Wang Yanan1,Qian Jianhua2ORCID,Li Junhua2,Xing Jinjuan2,Liu Lin3

Affiliation:

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

2. School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China

3. Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China

Abstract

Due to the depletion of fossil fuels, the demand for renewable energy has increased, thus stimulating the development of novel materials for energy conversion devices such as fuel cells. In this work, nickel nanoparticles loaded on reduced graphene oxide (Ni/rGO) with small size and good dispersibility were successfully prepared by controlling the pyrolysis temperature of the precursor at 450 °C, assisted by a microwave-assisted hydrothermal method, and exhibited enhanced electrocatalytic activity towards oxygen reduction reaction (ORR). Additionally, the electron enrichment on Ni NPs was due to charge transfer from the rGO support to metal nickel, as evidenced by both experimental and theoretical studies. Metal–support interactions between nickel and the rGO support also facilitated charge transfer, contributing to the enhanced ORR performance of the composite material. DFT calculations revealed that the first step (from O2 to HOO*) was the rate-determining step with an RDS energy barrier lower than that of the Pt(111), indicating favorable ORR kinetics. The HOO* intermediates can be transferred onto rGO by the solid-phase spillover effect, which reduces the chemical adsorption on the nickel surface, thereby allowing continuous regeneration of active nickel sites. The HO2− intermediates generated on the surface of rGO by 2e− reduction can also efficiently diffuse towards the nearby Ni surface or the interface of Ni/rGO, where they can be further rapidly reduced to OH−. This mechanism acts as the pseudo-four-electron path on the RRDE. Furthermore, Ni/rGO-450 demonstrated superior stability, methanol tolerance, and durability compared to a 20 wt% Pt/C catalyst, making it a cost-effective alternative to conventional noble metal ORR catalysts for fuel cells or metal–air batteries.

Funder

National Natural Science Foundation of China

Innovation Team Project of Liaoning Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3