The Effects of Subtoxic Dose of Acetaminophen Combined With Exercise on the Liver of Rats

Author:

Aksu I1,Kiray M1,Gencoglu C2,Tas A3,Acikgoz O1

Affiliation:

1. Department of Physiology, Dokuz Eylul University Medical Faculty, Balcova, Izmir, Republic of Türkiye

2. Department of Physical Education and Sports Teaching, Dokuz Eylul University Sports Science Faculty, Seferihisar, Izmir, Republic of Türkiye

3. Darica Farabi Training and Research Hospital, Darica, Kocaeli, Republic of Türkiye

Abstract

Regular physical exercise is beneficial to the body. Acute exercise causes oxidant stress in many tissues including the liver by creating an unbalanced status between oxidant and antioxidant levels. Analgesic drugs are commonly consumed to reduce the pain after exercise. Acetaminophen (APAP), commonly used as an over-the-counter analgesic, can cause hepatotoxicity. The aim of this study was to investigate the effect and underlying mechanisms of APAP at subtoxic dose, which is given after the acute and exhaustive exercise on the rat livers. Male Wistar rats weighing 200-250 g were divided into 6 groups each consisting of 7 rats/group; Control, APAP (250 mg/kg, ip), Acute Exercise (AEx), Acute Exhaustive Exercise (AEEx), Acute Exercise and APAP (AEx+APAP) and Acute Exhaustive Exercise and APAP (AEEx+APAP) groups. Rats were exercised at moderate intensity or exhaustive on the treadmill and then received APAP. Tissue MDA levels were significantly increased in AEEx, AEx+APAP and AEEx+APAP groups compared with the control. There was no significant difference in GSH levels between groups. Tissue Sirtuin1 (Sirt1) levels of APAP, AEx and AEEx groups were significantly less than control. There was no significant difference between groups in VEGF levels. Liver damage score was significantly higher in all groups compared with control group. As a result, this study shows that subtoxic dose of APAP treatment alone or in combination with acute or exhaustive treadmill exercise can cause oxidative liver damage by affecting Sirt1 levels and without affecting VEGF levels

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3