miR-431-5p Regulates Apoptosis of Cardiomyocytes After Acute Myocardial Infarction via Targeting Selenoprotein T

Author:

GENG H1,CHEN L1,SU Y1,XU Q1,FAN M1,HUANG R1,LI X1,LU X1,PAN M1

Affiliation:

1. Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China

Abstract

Acute myocardial infarction (AMI) represents the acute manifestation of coronary artery disease. In recent years, microRNAs (miRNAs) have been extensively studied in AMI. This study focused on the role of miR-431-5p in AMI and its effect on cardiomyocyte apoptosis after AMI. The expression of miR-431-5p was analyzed by quantitative real-time PCR (qRT-PCR). By interfering with miR-431-5p in hypoxia-reoxygenation (H/R)-induced HL-1 cardiomyocytes, the effect of miR-431-5p on cardiomyocyte apoptosis after AMI was examined. The interaction between miR-431-5p and selenoprotein T (SELT) mRNA was verified by dual-luciferase reporter assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. Cell viability was examined by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. The results of qRT-PCR showed that the expression of miR-431-5p in AMI myocardial tissues and H/R-induced HL-1 cardiomyocytes was significantly increased. After interfering with miR-431-5p, the expression of SELT in HL-1 cells was up-regulated, cell apoptosis was decreased, cell viability was increased, and lactate dehydrogenase (LDH) activity was decreased. The dual-luciferase reporter assay confirmed the targeting relationship between miR-431-5p and SELT1 3’ untranslated region (UTR). In H/R-induced HL-1 cells, the simultaneous silencing of SELT and miR-431-5p resulted in a decrease of Bcl-2 expression, an increase of Bax expression, and an increase of cleaved-caspase 3 expression compared with silencing miR-431-5p alone. Also, cell viability was decreased, while LDH activity was increased by the simultaneous silencing of SELT and miR-431-5p. Interfering miR-431-5p protected cardiomyocytes from AMI injury via restoring the expression of SELT, providing new ideas for the treatment of AMI.

Publisher

Institute of Physiology of the Czech Academy of Sciences

Subject

General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3