Optimization of the concentration of ozone generated by DBD using PSO algorithm for water treatment process

Author:

Ahmed Ghaitaoui Essama,Kamel Nassour,Nemmich Said,Ghaitaoui Touhami,Khalil Oulad Naoui Brahim El,Bouroumeid Yassine,Tilmatine Amar,Halali Youcef

Abstract

The water treatment process with ozone is influenced by various operating parameters and environmental factors that can impact its efficiency. In this study, experiments were conducted using a Venturi pumping frame to investigate the effects of three controllable variables: oxygen flow height, applied voltage level, and water flow rate. The tests aimed to develop a mathematical model that accurately represents the relationship between these input variables and the resulting ozone concentration in the treated water. The experimental data was analyzed using the MODDE 5.0 software, a specialized application for statistical modeling and design of experiments. By fitting the data to appropriate model equations, a mathematical model was obtained that quantifies the influence of each variable and their interactions on the ozone concentration response. To optimize the process performance, a particle swarm optimization (PSO) algorithm was employed to extract the best-fit parameters for the mathematical model. PSO is a computational technique inspired by the social behavior of bird flocks or fish schools, utilizing a population of candidate solutions that evolve iteratively to converge on the global optimum solution. In this case, PSO searched for the model parameter values that minimized the error between predicted and experimentally measured ozone concentrations, rapidly converging to an accurate solution. The optimized mathematical model enables predicting the ozone concentration under any combination of oxygen flow height, voltage, and water flow rate within the experimental range. This predictive capability facilitates identifying the optimum operating conditions to maximize ozone concentration, thereby enhancing the efficiency of the water treatment process. The model serves as a valuable tool for process control, monitoring, and optimization, ensuring consistent treatment quality while minimizing resource consumption and operational costs.

Publisher

South Florida Publishing LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3