Optimal Design of a Biogas-based Renewable Power Production System

Author:

Uday Vikram1,Jogwar Sujit1

Affiliation:

1. Indian Institute of Technology Bombay, Department of Chemical Engineering, Mumbai, Maharashtra, India

Abstract

This paper presents optimal design for an energy-integrated biogas-fuel cell system for renewable electricity generation. The integrated process consists of two steps. The first step generates hydrogen from biogas via methane steam reforming (SMR), whereas the second step electrochemically converts this hydrogen into electricity using a solid oxide fuel cell (SOFC). These two steps are coupled via material and energy integration. Specifically, various design alternatives like anode and/or cathode gas recycling, biogas upgradation by CO2 removal, external versus direct internal reforming, and auxiliary power production through steam and/or micro gas turbine are explored to improve the overall efficiency and total annualized cost of the system. Specifically, a flowsheet superstructure is developed by incorporating all the available design alternatives. An optimal flowsheet with minimum total annualized cost is extracted from this superstructure using formal optimization techniques to meet the desired power target. Heat exchanger network superstructure is used to incorporate energy integration effectively. The proposed flowsheet and the corresponding optimal operating conditions are explained by analyzing the trade-offs associated with the corresponding design variables in terms of power production, capital expenditure, and utility consumption. For a power target of 300 kW, the proposed optimal energy-integrated process has a total annualized cost of $608,955/y with a net electrical efficiency of 67.1% and corresponds to electricity cost of $0.23/kWh.

Publisher

PSE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3