Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers

Author:

Chan Mark K.H.12,Kwong Dora L.W.3,Tam Eric4,Tong Anthony4,Ng Sherry C.Y.3

Affiliation:

1. Department of Clinical Oncology The University of Hong Kong Hong Kong China

2. Department of Clinical Oncology Tuen Mun Hospital Hong Kong China

3. Department of Clinical Oncology Queen Mary Hospital Hong Kong China

4. Theresa Po CyberKnife Center Hong Kong China

Abstract

In lung stereotactic body radiotherapy (SBRT), variability of intrafractional target motion can negate the potential benefits of four‐dimensional (4D) treatment planning that aims to account for the dosimetric impacts of organ motion. This study used tumor motion data obtained from CyberKnife SBRT treatments to quantify the reproducibility of probability motion function (pmf) of 37 lung tumors. The reproducibility of pmf was analyzed with and without subtracting the intrafractional baseline drift from the original motion data. Statistics of intrafractional tumor motion including baseline drift, target motion amplitude and period, were also calculated. The target motion amplitude significantly correlates with variations (1 SD) of motion amplitude and baseline drift. Significant correlation between treatment time and variations (1 SD) of motion amplitude was observed in anterior‐posterior (AP) motion, but not in craniocaudal (CC) and left‐right (LR) motion. The magnitude of AP and LR baseline drifts significantly depend on the treatment time, while the CC baseline drift does not. The reproducibility of pmf as a function of time can be well described by a two‐exponential function with a fast and slow component. The reproducibility of pmf is over 60% for the CC motion and over 50% for the AP and LR motions when baseline variations were subtracted from the original motion data. It decreases to just over 30% for the CC motion and about 20% for the AP and LR motion, otherwise. 4D planning has obvious limitations due to variability of intrafractional target motion. To account for potential risks of overdosing critical organs, it is important to simulate the dosimetric impacts of intra‐ and interfractional baseline drift using population statistics obtained from SBRT treatments.PACS number: 87.55.‐x

Funder

Hong Kong Adventist Hospital

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3