Flattening filter‐free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group

Author:

Xiao Ying1,Kry Stephen F.2,Popple Richard3,Yorke Ellen4,Papanikolaou Niko5,Stathakis Sotirios6,Xia Ping7,Huq Saiful8,Bayouth John9,Galvin James10,Yin Fang‐Fang11

Affiliation:

1. Department of Medical Physics Thomas Jefferson University Hospital Philadelphia PA

2. Department of Radiation Physics University of Texas MD Anderson Cancer Center Houston TX

3. Department of Radiation Oncology University of Alabama Birmingham Birmingham AL

4. Department of Medical Physics Memorial Sloan‐Kettering Cancer Center New York NY

5. Department of Medical Physics University of Texas Health Science Center at San Antonio San Antonio TX

6. Department of Radiation Onoclogy University of Texas Health Science Center at San Antonio San Antonio TX

7. Department of Radiation Oncology The Cleveland Clinic Cleveland OH

8. Department of Radiation Oncology University of Pittsburgh Medical Center Pittsburgh PA

9. Department of Human Onoclogy University of Wisconsin Madison WI

10. Department of Radiation Oncology Jefferson Hospital Newtown PA

11. Department of Radiation Oncology Duke University Medical Center Durham NC USA

Abstract

This report describes the current state of flattening filter‐free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high‐dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out‐of‐field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity‐modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated.PACS number: 87.53.‐j, 87.53.Bn, 87.53.Ly, 87.55.‐x, 87.55.N‐, 87.56.bc

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3