A Machine Learning–Based Framework for Predicting Pavement Roughness and Aggregate Segregation during Construction

Author:

Elseifi Mostafa A.1ORCID,Sarkar Md. Tanvir Ahmed2ORCID,Paudel Ramchandra3,Abohamer Hossam4ORCID,Mousa Momen R.5

Affiliation:

1. Occidental Chemical Corporation Distinguished Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3240N Patrick Taylor Hall, Baton Rouge, LA 70803 (corresponding author). ORCID: .

2. Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3256 Patrick Taylor Hall, Baton Rouge, LA 70803. ORCID: .

3. Formerly, Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Louisiana State Univ., Newark, DE 19716.

4. Civil Staff Engineer, Applied Research Associates, 2217 W Braker Ln., Austin, TX 78758. ORCID: .

5. Assistant Professor, Dept. of Engineering Technology, Sam Houston State Univ., Huntsville, TX 77340.

Publisher

American Society of Civil Engineers (ASCE)

Reference15 articles.

1. Development of a Deep Convolutional Neural Network for the Prediction of Pavement Roughness from 3D Images

2. Bode T. A. 2012. “An analysis of the impacts of temperature segregation on hot-mix asphalt.” Master’s thesis Dept. of Civil and Environmental Engineering Univ. of Nebraska.

3. Dhakal N. 2020. “Identification of top-down bottom-up and cement-treated reflective cracks using convolutional neural network and artificial neural network.” Ph.D. dissertation Dept. of Civil and Environmental Engineering Louisiana State Univ.

4. Classification of surface pavement cracks as top-down, bottom-up, and cement-treated reflective cracking based on deep learning methods;Dhakal N.;Can. J. Civ. Eng.,2021

5. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3