Extractive Opinion Summarization in Quantized Transformer Spaces

Author:

Angelidis Stefanos1,Amplayo Reinald Kim2,Suhara Yoshihiko3,Wang Xiaolan4,Lapata Mirella5

Affiliation:

1. University of Edinburgh, United Kingdom. s.angelidis@ed.ac.uk

2. University of Edinburgh, United Kingdom. reinald.kim@ed.ac.uk

3. Megagon Labs, United States. yoshi@megagon.ai

4. Megagon Labs, United States. xiaolan@megagon.ai

5. University of Edinburgh, United Kingdom. mlap@inf.ed.ac.uk

Abstract

Abstract We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available Space, a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.

Publisher

MIT Press - Journals

Reference45 articles.

1. Informative and controllable opinion summarization;Amplayo;arXiv preprint arXiv:1909.02322v1,2019

2. Unsupervised opinion summarization with noising and denoising;Amplayo,2020

3. Summarizing opinions: Aspect extraction meets sentiment prediction and they are both weakly supervised;Angelidis,2018

4. Estimating or propagating gradients through stochastic neurons for conditional computation;Bengio;arXiv preprint arXiv: 1308.3432v1,2013

5. Unsupervised opinion summarization as copycat-review generation;Bražinskas,2020

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3