Moving on Time: Brain Network for Auditory-Motor Synchronization is Modulated by Rhythm Complexity and Musical Training

Author:

Chen Joyce L.12,Penhune Virginia B.23,Zatorre Robert J.12

Affiliation:

1. 1McGill University, Montreal, Canada

2. 2BRAMS Laboratory, Montreal, Canada

3. 3Concordia University, Montreal, Canada

Abstract

Abstract Much is known about the motor system and its role in simple movement execution. However, little is understood about the neural systems underlying auditory-motor integration in the context of musical rhythm, or the enhanced ability of musicians to execute precisely timed sequences. Using functional magnetic resonance imaging, we investigated how performance and neural activity were modulated as musicians and nonmusicians tapped in synchrony with progressively more complex and less metrically structured auditory rhythms. A functionally connected network was implicated in extracting higher-order features of a rhythm's temporal structure, with the dorsal premotor cortex mediating these auditory-motor interactions. In contrast to past studies, musicians recruited the prefrontal cortex to a greater degree than nonmusicians, whereas secondary motor regions were recruited to the same extent. We argue that the superior ability of musicians to deconstruct and organize a rhythm's temporal structure relates to the greater involvement of the prefrontal cortex mediating working memory.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 341 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3