Finite State Automata and Simple Recurrent Networks

Author:

Cleeremans Axel1,Servan-Schreiber David2,McClelland James L.1

Affiliation:

1. Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213 USA

2. Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213 USA

Abstract

We explore a network architecture introduced by Elman (1988) for predicting successive elements of a sequence. The network uses the pattern of activation over a set of hidden units from time-step t−1, together with element t, to predict element t + 1. When the network is trained with strings from a particular finite-state grammar, it can learn to be a perfect finite-state recognizer for the grammar. When the network has a minimal number of hidden units, patterns on the hidden units come to correspond to the nodes of the grammar, although this correspondence is not necessary for the network to act as a perfect finite-state recognizer. We explore the conditions under which the network can carry information about distant sequential contingencies across intervening elements. Such information is maintained with relative ease if it is relevant at each intermediate step; it tends to be lost when intervening elements do not depend on it. At first glance this may suggest that such networks are not relevant to natural language, in which dependencies may span indefinite distances. However, embeddings in natural language are not completely independent of earlier information. The final simulation shows that long distance sequential contingencies can be encoded by the network even if only subtle statistical properties of embedded strings depend on the early information.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 295 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A provably stable neural network Turing Machine with finite precision and time;Information Sciences;2024-02

2. Efficient prediction of runway visual range by using a hybrid CNN-LSTM network architecture for aviation services;Theoretical and Applied Climatology;2023-11-30

3. Wearable Universal Long-Range Hand-Gestured UAV Radio Control;2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES);2023-10-26

4. Parking Prediction in Smart Cities: A Survey;IEEE Transactions on Intelligent Transportation Systems;2023-10

5. Analogical inference from distributional structure: What recurrent neural networks can tell us about word learning;Machine Learning with Applications;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3