Vector Symbolic Finite State Machines in Attractor Neural Networks

Author:

Cotteret Madison12,Greatorex Hugh3,Ziegler Martin4,Chicca Elisabetta5

Affiliation:

1. Micro- and Nanoelectronic Systems, Institute of Micro- and Nanotechnologies (IMN) MacroNano, Technische Universität Ilmenau, 98693 Ilmenau, Germany

2. Bio-Inspired Circuits and Systems Lab, Zernike Institute for Advanced Materials, and Groningen Cognitive Systems and Materials Center, University of Groningen, 9747 AG Groningen, Netherlands m.cotteret@rug.nl

3. Bio-Inspired Circuits and Systems Lab, Zernike Institute for Advanced Materials, and Groningen Cognitive Systems and Materials Center, University of Groningen, 9747 AG Groningen, Netherlands h.r.greatorex@rug.nl

4. Micro- and Nanoelectronic Systems, Institute of Micro- and Nanotechnologies (IMN) MacroNano, Technische Universität Ilmenau, 98693 Ilmenau, Germany martin.ziegler@tu-ilmenau.de

5. Bio-Inspired Circuits and Systems Lab, Zernike Institute for Advanced Materials, and Groningen Cognitive Systems and Materials Center, University of Groningen, 9747 AG Groningen, Netherlands e.chicca@rug.nl

Abstract

Abstract Hopfield attractor networks are robust distributed models of human memory, but they lack a general mechanism for effecting state-dependent attractor transitions in response to input. We propose construction rules such that an attractor network may implement an arbitrary finite state machine (FSM), where states and stimuli are represented by high-dimensional random vectors and all state transitions are enacted by the attractor network’s dynamics. Numerical simulations show the capacity of the model, in terms of the maximum size of implementable FSM, to be linear in the size of the attractor network for dense bipolar state vectors and approximately quadratic for sparse binary state vectors. We show that the model is robust to imprecise and noisy weights, and so a prime candidate for implementation with high-density but unreliable devices. By endowing attractor networks with the ability to emulate arbitrary FSMs, we propose a plausible path by which FSMs could exist as a distributed computational primitive in biological neural networks.

Publisher

MIT Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3