Neural Representation of Probabilistic Information

Author:

Barber M. J.1,Clark J. W.2,Anderson C. H.3

Affiliation:

1. Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany

2. Department of Physics, Washington University, Saint Louis, MO 63130, U.S.A.

3. Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A.

Abstract

It has been proposed that populations of neurons process information in terms of probability density functions (PDFs) of analog variables. Such analog variables range, for example, from target luminance and depth on the sensory interface to eye position and joint angles on the motor output side. The requirement that analog variables must be processed leads inevitably to a probabilistic description, while the limited precision and lifetime of the neuronal processing units lead naturally to a population representation of information. We show how a time-dependent probability densityρ(x; t) over variable x, residing in a specified function space of dimension D, may be decoded from the neuronal activities in a population as a linear combination of certain decoding functions φi(x), with coefficients given by the N firing rates ai(t) (generally with D ≪ N). We show how the neuronal encoding process may be described by projecting a set of complementary encoding functions [Formula: see text]i(x) on the probability density ρ(x; t), and passing the result through a rectifying nonlinear activation function. We show how both encoders [Formula: see text]i (x) and decoders φi(x) may be determined by minimizing cost functions that quantify the inaccuracy of the representation. Expressing a given computation in terms of manipulation and transformation of probabilities, we show how this representation leads to a neural circuit that can carry out the required computation within a consistent Bayesian framework, with the synaptic weights being explicitly generated in terms of encoders, decoders, conditional probabilities, and priors.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3