Stimulus Onset Asynchrony Affects Weighting-related Event-related Spectral Power in Self-motion Perception

Author:

Townsend Ben1ORCID,Legere Joey K.1,v. Mohrenschildt Martin1,Shedden Judith M.1

Affiliation:

1. McMaster University, Hamilton, Ontario, Canada

Abstract

Abstract Self-motion perception relies primarily on the integration of the visual, vestibular, proprioceptive, and somatosensory systems. There is a gap in understanding how a temporal lag between visual and vestibular motion cues affects visual–vestibular weighting during self-motion perception. The beta band is an index of visual–vestibular weighting, in that robust beta event-related synchronization (ERS) is associated with visual weighting bias, and robust beta event-related desynchronization is associated with vestibular weighting bias. The present study examined modulation of event-related spectral power during a heading judgment task in which participants attended to either visual (optic flow) or physical (inertial cues stimulating the vestibular, proprioceptive and somatosensory systems) motion cues from a motion simulator mounted on a MOOG Stewart Platform. The temporal lag between the onset of visual and physical motion cues was manipulated to produce three lag conditions: simultaneous onset, visual before physical motion onset, and physical before visual motion onset. There were two main findings. First, we demonstrated that when the attended motion cue was presented before an ignored cue, the power of beta associated with the attended modality was greater than when visual–vestibular cues were presented simultaneously or when the ignored cue was presented first. This was the case for beta ERS when the visual-motion cue was attended to, and beta event-related desynchronization when the physical-motion cue was attended to. Second, we tested whether the power of feature-binding gamma ERS (demonstrated in audiovisual and visual–tactile integration studies) increased when the visual–vestibular cues were presented simultaneously versus with temporal asynchrony. We did not observe an increase in gamma ERS when cues were presented simultaneously, suggesting that electrophysiological markers of visual–vestibular binding differ from markers of audiovisual and visual–tactile integration. All event-related spectral power reported in this study were generated from dipoles projecting from the left and right motor areas, based on the results of Measure Projection Analysis.

Funder

The Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

MIT Press

Subject

Cognitive Neuroscience

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3