Electrophysiological Correlates of Stimulus-driven Reorienting Deficits after Interference with Right Parietal Cortex during a Spatial Attention Task: A TMS-EEG Study

Author:

Capotosto Paolo1,Corbetta Maurizio12,Romani Gian Luca1,Babiloni Claudio34

Affiliation:

1. 1Istituto di Tecnologie Avanzate Biomediche Università “G. D'Annunzio,” Chieti, Italy

2. 2Washington University School of Medicine, St. Louis, MO

3. 3Univ. di Foggia, Foggia, Italy

4. 4San Raffaele Cassino, Italy

Abstract

Abstract TMS interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and EEG rhythmic correlates of endogenous spatial orienting before visual target presentation [Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. Differential contribution of right and left parietal cortex to the control of spatial attention: A simultaneous EEG-rTMS study. Cerebral Cortex, 22, 446–454, 2012; Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. Fronto-parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. Journal of Neuroscience, 29, 5863–5872, 2009]. Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven reorienting or the ability to efficiently process unattended stimuli, that is, stimuli outside the current focus of attention. Healthy volunteers (n = 24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 msec simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 msec (P3) post-target. The P3 significantly decreased for unattended targets and significantly increased for attended targets after right IPS-rTMS as compared with sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of volunteers. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with postdecision processes that are part of stimulus-driven reorienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven reorienting processes in human vision.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference44 articles.

1. The temporal locus of the interaction between working memory consolidation and the attentional blink.;Akyürek;Psychophysiology,2010

2. Tolerability and safety of high daily doses of repetitive transcranial magnetic stimulation in healthy young men.;Anderson;The Journal of ECT,2006

3. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance.;Aston-Jones;Annual Review of Neuroscience,2005

4. Visuo-spatial consciousness and parieto-occipital areas: A high-resolution EEG study.;Babiloni;Cerebral Cortex,2006

5. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function.;Bouret;Trends in Neurosciences,2005

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3