Rhythmic Temporal Cues Coordinate Cross-frequency Phase-amplitude Coupling during Memory Encoding

Author:

Townsend Paige Hickey12,Jones Alexander3,Patel Aniruddh D.45,Race Elizabeth4

Affiliation:

1. Massachusetts General Hospital, Charlestown, MA

2. Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA

3. Middlesex University, London, United Kingdom

4. Tufts University, Medford, MA

5. Canadian Institute for Advanced Research

Abstract

Abstract Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549–1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat [Hickey, P., Merseal, H., Patel, A. D., & Race, E. Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. Neuroimage, 213, 116693, 2020]. We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.

Funder

GRAMMY Museum

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3