Multi-modal Representation of the Size of Space in the Human Brain

Author:

Lee Jaeeun1,Park Soojin2

Affiliation:

1. University of Minnesota

2. Yonsei University, Seoul, South Korea

Abstract

Abstract To estimate the size of an indoor space, we must analyze the visual boundaries that limit the spatial extent and acoustic cues from reflected interior surfaces. We used fMRI to examine how the brain processes the geometric size of indoor scenes when various types of sensory cues are presented individually or together. Specifically, we asked whether the size of space is represented in a modality-specific way or in an integrative way that combines multimodal cues. In a block-design study, images or sounds that depict small- and large-sized indoor spaces were presented. Visual stimuli were real-world pictures of empty spaces that were small or large. Auditory stimuli were sounds convolved with different reverberations. By using a multivoxel pattern classifier, we asked whether the two sizes of space can be classified in visual, auditory, and visual–auditory combined conditions. We identified both sensory-specific and multimodal representations of the size of space. To further investigate the nature of the multimodal region, we specifically examined whether it contained multimodal information in a coexistent or integrated form. We found that angular gyrus and the right medial frontal gyrus had modality-integrated representation, displaying sensitivity to the match in the spatial size information conveyed through image and sound. Background functional connectivity analysis further demonstrated that the connection between sensory-specific regions and modality-integrated regions increases in the multimodal condition compared with single modality conditions. Our results suggest that spatial size perception relies on both sensory-specific and multimodal representations, as well as their interplay during multimodal perception.

Funder

National Eye Institute

National Research Foundation of Korea

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3