The Role of Dopamine in Motor Flexibility

Author:

Bestmann Sven1,Ruge Diane1,Rothwell John1,Galea Joseph M.12

Affiliation:

1. 1University College London

2. 2University of Birmingham

Abstract

Abstract Humans carry out many daily tasks in a seemingly automatic fashion. However, when unexpected changes in the environment occur, we have the capacity to inhibit prepotent behavior and replace it with an alternative one. Such behavioral flexibility is a hallmark of executive functions. The neurotransmitter dopamine is known to be crucial for fast, efficient, and accurate cognitive flexibility. Despite the perceived similarities between cognitive and motor flexibility, less is known regarding the role of dopamine within the motor domain. Therefore, the aim of this study was to determine the role of dopamine in motor flexibility. In a double-blind, five-session, within-subject pharmacological experiment, human participants performed an RT task within a probabilistic context that was either predictable or unpredictable. The probabilistic nature of the predictable context resulted in prediction errors. This required participants to replace the prepotent or prepared action with an unprepared action (motor flexibility). The task was overlearned, and changes in context were explicitly instructed, thus controlling for contributions from other dopamine-related processes such as probabilistic or reversal learning and interactions with other types of uncertainty. We found that dopamine receptor blockade by high-dose haloperidol (D1/D2 dopamine receptors) impaired participants' ability to react to unexpected events occurring in a predictable context, which elicit large prediction errors and necessitate motor flexibility. This effect was not observed with selective D2 receptor blockade (sulpiride), with a general increase in tonic dopamine levels (levodopa), or during an unpredictable context, which evoked minimal prediction error. We propose that dopamine is vital in responding to low-level prediction errors about stimulus outcome that requires motor flexibility.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference68 articles.

1. Dopamine reverses reward insensitivity in apathy following globus pallidus lesions.;Adam;Cortex,2012

2. Problem solving in Parkinson's disease: Comparison of performance on the Wisconsin and California Card Sorting Tests.;Beatty;Journal of Geriatric Psychiatry and Neurology,1990

3. Learning the value of information in an uncertain world.;Behrens;Nature Neuroscience,2007

4. Influence of uncertainty and surprise on human corticospinal excitability during preparation for action.;Bestmann;Current Biology,2008

5. Olanzapine: A basic science update.;Bymaster;The British Journal of Psychiatry,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3