Spatio-Temporal Prediction Modulates the Perception of Self-Produced Stimuli

Author:

Blakemore Sarah-J.1,Frith Chris D.1,Wolpert Daniel M.2

Affiliation:

1. Wellcome Department of Cognitive Neurology, University College London

2. Institute of Neurology, University College London

Abstract

Abstract We investigated why self-produced tactile stimulation is perceived as less intense than the same stimulus produced externally. A tactile stimulus on the palm of the right hand was either externally produced, by a robot or self-produced by the subject. In the conditions in which the tactile stimulus was self-produced, subjects moved the arm of a robot with their left hand to produce the tactile stimulus on their right hand via a second robot. Subjects were asked to rate intensity of the tactile sensation and consistently rated self-produced tactile stimuli as less tickly, intense, and pleasant than externally produced tactile stimuli. Using this robotic setup we were able to manipulate the correspondence between the action of the subjects' left hand and the tactile stimulus on their right hand. First, we parametrically varied the delay between the movement of the left hand and the resultant movement of the tactile stimulus on the right hand. Second, we implemented varying degrees of trajectory perturbation and varied the direction of the tactile stimulus movement as a function of the direction of left-hand movement. The tickliness rating increased significantly with increasing delay and trajectory perturbation. This suggests that self-produced movements attenuate the resultant tactile sensation and that a necessary requirement of this attenuation is that the tactile stimulus and its causal motor command correspond in time and space. We propose that the extent to which self-produced tactile sensation is attenuated (i.e., its tickliness) is proportional to the error between the sensory feedback predicted by an internal forward model of the motor system and the actual sensory feedback produced by the movement.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 652 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eye did this! Sense of agency in eye movements;Acta Psychologica;2024-03

2. Atypical Impact of Action Effect Delay on Motor Performance in Autism;Journal of Autism and Developmental Disorders;2024-02-05

3. The sense of agency from active causal inference;2024-01-30

4. Federated inference and belief sharing;Neuroscience & Biobehavioral Reviews;2024-01

5. Action does not enhance but attenuates predicted touch;eLife;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3