Affiliation:
1. Department of Mathematical Engineering and Information Physics, University of Tokyo, Tokyo 113, Japan
2. Department of Physics, Kyoto University, Kyoto 606, Japan
Abstract
If machines are learning to make decisions given a number of examples, the generalization error ε(t) is defined as the average probability that an incorrect decision is made for a new example by a machine when trained with t examples. The generalization error decreases as t increases, and the curve ε(t) is called a learning curve. The present paper uses the Bayesian approach to show that given the annealed approximation, learning curves can be classified into four asymptotic types. If the machine is deterministic with noiseless teacher signals, then (1) ε ∼ at-1 when the correct machine parameter is unique, and (2) ε ∼ at-2 when the set of the correct parameters has a finite measure. If the teacher signals are noisy, then (3) ε ∼ at-1/2 for a deterministic machine, and (4) ε ∼ c + at-1 for a stochastic machine.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献