Estimation of global and local complexities of brain networks: A random walks approach

Author:

Sotero Roberto C.123,Sanchez-Rodriguez Lazaro M.12,Moradi Narges123,Dousty Mehdy45

Affiliation:

1. Hotchkiss Brain Institute, University of Calgary, AB, Canada

2. Department of Radiology, University of Calgary, AB, Canada

3. Biomedical Engineering Graduate Program, University of Calgary, AB, Canada

4. Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada

5. KITE, Toronto Rehab, University Health Network, Toronto, ON, Canada

Abstract

The complexity of brain activity has been observed at many spatial scales and has been proposed to differentiate between mental states and disorders. Here we introduced a new measure of (global) network complexity, constructed as the sum of the complexities of its nodes (i.e., local complexity). The complexity of each node is obtained by comparing the sample entropy of the time series generated by the movement of a random walker on the network resulting from removing the node and its connections, with the sample entropy of the time series obtained from a regular lattice (ordered state) and a random network (disordered state). We studied the complexity of fMRI-based resting-state networks. We found that positively correlated (pos) networks comprising only the positive functional connections have higher complexity than anticorrelation (neg) networks (comprising the negative connections) and the network consisting of the absolute value of all connections (abs). We also observed a significant correlation between complexity and the strength of functional connectivity in the pos network. Our results suggest that the pos network is related to the information processing in the brain and that functional connectivity studies should analyze pos and neg networks separately instead of the abs network, as is commonly done.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3