Synchrony in auditory 40-Hz gamma oscillations increases in older age and correlates with hearing abilities and cortical GABA levels

Author:

Dobri Simon12,Chen J. Jean12,Ross Bernhard12

Affiliation:

1. Rotman Research Institute, Baycrest Centre, Toronto, Canada

2. Department of Medical Biophysics, University of Toronto, Toronto, Canada

Abstract

Abstract Synchronized 40-Hz gamma oscillations in specific sensory and higher-order thalamocortical networks provide a neural mechanism for feature binding. Aging-related changes in gamma oscillations may cause deficits in auditory feature binding, contributing to impaired speech-in-noise perception. Gamma synchrony is controlled through inhibitory mechanisms mediated by the neurotransmitter γ-aminobutyric acid (GABA), which has been shown to decline in aging. This study investigated aging-related changes in gamma oscillations and how they relate to auditory function and cortical GABA levels. Magnetoencephalograms of 40-Hz auditory steady-state responses (ASSRs) were recorded in young and older adults by presenting amplitude-modulated tones in quiet and mixed with concurrent multi-talker babble noise. Responses in the quiet condition had longer latencies and more prominent amplitudes, indicating the 40-Hz ASSRs in noise were dominated by a sensory component and in quiet by a component involved in higher-order processing. The ASSR amplitudes increased in older adults under both stimulus conditions. However, larger ASSR amplitudes were associated with more severe hearing and speech-in-noise loss only in the noise condition. This suggests the aging-related increase in synchrony of sensory gamma oscillations has a detrimental effect on auditory processing. It may cause increased interference between competing sounds in the central auditory system, making it difficult for the aging auditory system to separate speech features from noise and bind them into a distinct perceptual object. Also in older adults, larger amplitudes of the 40-Hz ASSRs in the quiet condition were associated with higher left auditory cortex GABA concentrations measured with magnetic resonance spectroscopy, supporting GABA’s role in internally generated gamma synchrony in aging.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3