Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell–Associated Markers

Author:

Mitchell James B.1,McIntosh Kevin1,Zvonic Sanjin2,Garrett Sara1,Floyd Z. Elizabeth2,Kloster Amy3,Di Halvorsen Yuan34,Storms Robert W.5,Goh Brian2,Kilroy Gail2,Wu Xiying2,Gimble Jeffrey M.23

Affiliation:

1. Cognate Therapeutics, Inc., Baltimore, Maryland

2. Stem Cell Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana

3. Artecel Sciences, Durham, North Carolina

4. CuraGen Corporation, Branford, Connecticut

5. Duke University Medical Center, Durham, North Carolina, USA

Abstract

Abstract Adipose tissue represents an abundant and accessible source of multipotent adult stem cells and is used by many investigators for tissue engineering applications; however, not all laboratories use cells at equivalent stages of isolation and passage. We have compared the immunophenotype of freshly isolated human adipose tissue-derived stromal vascular fraction (SVF) cells relative to serial-passaged adipose-derived stem cells (ASCs). The initial SVF cells contained colony-forming unit fibroblasts at a frequency of 1:32. Colony-forming unit adipocytes and osteoblasts were present in the SVF cells at comparable frequencies (1:28 and 1:16, respectively). The immunophenotype of the adipose-derived cells based on flow cytometry changed progressively with adherence and passage. Stromal cell–associated markers (CD13, CD29, CD44, CD63, CD73, CD90, CD166) were initially low on SVF cells and increased significantly with successive passages. The stem cell–associated marker CD34 was at peak levels in the SVF cells and/or early-passage ASCs and remained present, although at reduced levels, throughout the culture period. Aldehyde dehydrogenase and the multidrug-resistance transport protein (ABCG2), both of which have been used to identify and characterize hematopoietic stem cells, are expressed by SVF cells and ASCs at detectable levels. Endothelial cell–associated markers (CD31, CD144 or VE-cadherin, vascular endothelial growth factor receptor 2, von Willebrand factor) were expressed on SVF cells and did not change significantly with serial passage. Thus, the adherence to plastic and subsequent expansion of human adipose-derived cells in fetal bovine serum-supplemented medium selects for a relatively homogeneous cell population, enriching for cells expressing a stromal immunophenotype, compared with the heterogeneity of the crude SVF.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3