Side Population Analysis Using a Violet-Excited Cell-Permeable DNA Binding Dye

Author:

Telford William G.1,Bradford Jolene2,Godfrey William2,Robey Robert W.3,Bates Susan E.3

Affiliation:

1. Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

2. Molecular Probes Invitrogen, Eugene, Oregon, USA

3. Cancer Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA

Abstract

Abstract Hoechst 33342 side population (SP) analysis is a common method for identifying stem cells in mammalian hematopoietic and nonhematopoietic tissues. Although widely employed for stem cell analysis, this method requires an ultraviolet (UV) laser to excite Hoechst 33342. Flow cytometers equipped with UV sources are not common because of the cost of both the laser and optics that can transmit light UV light. Violet laser sources are inexpensive and are now common fixtures on flow cytometers, but have been previously shown to provide insufficient Hoechst dye excitation for consistent resolution of SP cells. One solution to this problem is to identify additional fluorescent substrates with the same pump specificity as Hoechst 33342, but with better violet excitation characteristics. DyeCycle Violet reagent has emission characteristics similar to those of Hoechst 33342, but with a longer wavelength excitation maxima (369 nm). When this dye is loaded into hematopoietic cells, a sharply resolved side population was also observed, similar in appearance to that seen with Hoechst 33342. Unlike Hoechst SP, DCV SP was similar in appearance with both violet and UV excitation. DCV SP could be inhibited fumitremorgin C, and showed the same membrane pump specificity as Hoechst 33342. Simultaneous immunophenotyping with stem cell markers in mouse bone marrow demonstrated that DCV SP was restricted to the stem cell lineage− Sca-1+ c-kit+ cells population, as is Hoechst SP. Pending confirmation by functional analysis of DCV SP cells, these results suggest that DCV efflux identified approximately the same stem cell population as did Hoechst 33342 efflux. Substituting DCV for Hoechst 33342 in the SP technique may, therefore, allow side population analysis on flow cytometers with violet lasers. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3