Evolution of the c-kit-Positive Cell Response to Pathological Challenge in the Myocardium

Author:

Fransioli Jenna1,Bailey Brandi1,Gude Natalie A.1,Cottage Christopher T.1,Muraski John A.1,Emmanuel Gregory1,Wu Weitao1,Alvarez Roberto1,Rubio Marta1,Ottolenghi Sergio2,Schaefer Erik3,Sussman Mark A.1

Affiliation:

1. Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California, USA

2. Dipartimento Biotecnologie e Bioscienze, Università Milano-Bicocca-Piazza delle Scienze, Milan, Italy

3. Invitrogen Corporation, Hopkinton, Massachusetts, USA

Abstract

Abstract Cumulative evidence indicates that myocardium responds to growth or injury by recruitment of stem and/or progenitor cells that participate in repair and regenerative processes. Unequivocal identification of this population has been hampered by lack of reagents or markers specific to the recruited population, leading to controversies regarding the nature of these cells. Use of a transgenic mouse expressing green fluorescent protein driven by the c-kit promoter allows for unambiguous identification of this cell population. Green fluorescent protein (GFP) driven by the c-kit promoter labels a fraction of the c-kit+ cells recognized by antibody labeling for c-kit protein. Expression of GFP by the c-kit promoter and accumulation of GFP-positive cells in the myocardium is relatively high at birth compared with adult and declines between postnatal weeks 1 and 2, which tracks in parallel with expression of c-kit protein and c-kit-positive cells. Acute cardiomyopathic injury by infarction prompts increased expression of both GFP protein and GFP-labeled cells in the region of infarction relative to remote myocardium. Similar increases were observed for c-kit protein and cells with a slightly earlier onset and decline relative to the GFP signal. Cells coexpressing GFP, c-kit, and cardiogenic markers were apparent at 1–2 weeks postinfarction. Cardiac-resident c-kit+ cell cultures derived from the transgenic line express GFP that is diminished in parallel with c-kit by induction of differentiation. The use of genetically engineered mice validates and extends the concept of c-kit+ cells participating in the response to myocardial injury. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3