Global Epiproteomic Signatures Distinguish Embryonic Stem Cells from Differentiated Cells

Author:

Dai Bo12,Rasmussen Theodore P.312

Affiliation:

1. Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA

2. Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, USA

3. Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA

Abstract

Abstract Complex organisms contain a variety of distinct cell types but only a single genome. Therefore, cellular identity must be specified by the developmentally regulated expression of a subset of genes from an otherwise static genome. In mammals, genomic DNA is modified by cytosine methylation, resulting in a pattern that is distinctive for each cell type (the epigenome). Because nucleosomal histones are subject to a wide variety of post-translational modifications (PTMs), we reasoned that an analogous “epiproteome” might exist that could also be correlated with cellular identity. Here, we show that the quantitative evaluation of nucleosome PTMs yields epiproteomic signatures that are useful for the investigation of stem cell differentiation, chromatin function, cellular identity, and epigenetic responses to pharmacologic agents. We have developed a novel enzyme-linked immunosorbent assay-based method for the quantitative evaluation of the steady-state levels of PTMs and histone variants in preparations of native intact nucleosomes. We show that epiproteomic responses to the histone deacetylase inhibitor trichostatin A trigger changes in histone methylation as well as acetylation, and that the epiproteomic responses differ between mouse embryonic stem cells and mouse embryonic fibroblasts (MEFs). ESCs subjected to retinoic acid-induced differentiation contain reconfigured nucleosomes that include increased content of the histone variant macroH2A and other changes. Furthermore, ESCs can be distinguished from embryonal carcinoma cells and MEFs based purely on their epiproteomic signatures. These results indicate that epiproteomic nucleosomal signatures are useful for the investigation of stem cell identity and differentiation, nuclear reprogramming, epigenetic regulation, chromatin dynamics, and assays for compounds with epigenetic activities. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3