Osteopontin Promotes the Development of Natural Killer Cells from Hematopoietic Stem Cells

Author:

Chung Jin Woong12,Kim Mi Sun132,Piao Zheng-Hao12,Jeong Mira12,Yoon Suk Ran12,Shin Nara12,Kim Sang Yong12,Hwang Eun Sook42,Yang Young32,Lee Young Ho52,Kim Young Sang32,Choi Inpyo12

Affiliation:

1. Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, Republic of Korea

2. Department of Biochemistry, College of Natural Sciences, Chungnam National University, Taejon, Republic of Korea

3. Department of Life Science, Sookmyung Women's University, Yongsan-Gu, Seoul, Republic of Korea

4. Division of Molecular Life Sciences and College of Pharmacy, Ewha Women's University, Seoul, Republic of Korea

5. Department of Pathology, College of Medicine, Chungnam National University, Taejon, Republic of Korea

Abstract

Abstract The detailed mechanisms driving the development of natural killer (NK) cells from hematopoietic stem cells remain to be clearly elucidated. Here, we show that osteopontin (OPN) is a key factor for NK development. OPN-deficient mice evidenced severe impairments of NK development in bone marrow (BM) and spleen in which the NK populations that express CD122 and NK cell receptors were reduced. However, the absence of intrinsic OPN expression did not affect NK development, whereas the absence of OPN in the microenvironment caused a significant reduction in NK population. The expression of OPN was induced by interleukin (IL)-15 in BM stromal cells, and the defect in NK differentiation in IL-15−/− hematopoietic precursor cells (HPC) was recovered by addition of recombinant OPN, suggesting that the microenvironmental OPN may be a key factor in IL-15-mediated NK differentiation. In addition, OPN-driven NK maturation was reduced in T-bet-deficient HPC, suggesting that T-bet is required for OPN-mediated NK development. Collectively, these results show that paracrine OPN signaling drives NK-lineage commitment, thus ultimately promoting NK cell development. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3