Oncogenic Alterations in ERBB2/HER2 Represent Potential Therapeutic Targets Across Tumors From Diverse Anatomic Sites of Origin

Author:

Chmielecki Juliann1,Ross Jeffrey S.12,Wang Kai1,Frampton Garrett M.1,Palmer Gary A.1,Ali Siraj M.1,Palma Norma1,Morosini Deborah1,Miller Vincent A.1,Yelensky Roman1,Lipson Doron1,Stephens Philip J.1

Affiliation:

1. Foundation Medicine, Cambridge, Massachusetts, USA;

2. Department of Pathology, Albany Medical College, Albany, New York, USA

Abstract

Abstract Background. Targeted ERBB2/HER2 inhibitors are approved by the U.S. Food and Drug Administration for the treatment of breast, gastric, and esophageal cancers that overexpress or amplify HER2/ERBB2, as measured by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. Activating mutations in ERBB2 have also been reported and are predicted to confer sensitivity to these targeted agents. Testing for these mutations is not performed routinely, and FISH and IHC are not applied outside of these approved indications. Materials and Methods. We explored the spectrum of activating ERBB2 alterations across a collection of ∼7,300 solid tumor specimens that underwent comprehensive genomic profiling using next-generation sequencing. Results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes. Results. Known oncogenic ERBB2 alterations were identified in tumors derived from 27 tissues, and ERBB2 amplification in breast, gastric, and gastroesophageal cancers accounted for only 30% of these alterations. Activating mutations in ERBB2 were identified in 131 samples (32.5%); amplification was observed in 246 samples (61%). Two samples (0.5%) harbored an ERBB2 rearrangement. Ten samples (2.5%) harbored multiple ERBB2 mutations, yet mutations and amplifications were mutually exclusive in 91% of mutated cases. Conclusion. Standard slide-based tests for overexpression or amplification of ERBB2 would fail to detect the majority of activating mutations that occur overwhelmingly in the absence of copy number changes. Compared with current clinical standards, comprehensive genomic profiling of a more diverse set of tumor types may identify ∼3.5 times the number of patients who may benefit from ERBB2-targeted therapy.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3