Effect of Xenon on Proinflammatory Activation and Apoptosis of Human Neutrophils Under Ex Vivo Conditions

Author:

Grebenchikov O. A.1ORCID,Shabanov A. K.2ORCID,Nikolayev L. L.3ORCID,Shpichko A. I.1ORCID,Bratishchev I. V.4ORCID,Marchenko L. Yu.5ORCID,Khusainov Sh. Zh.6ORCID,Cherpakov R. A.1ORCID,Shpichko N. P.7ORCID

Affiliation:

1. Federal Scientific and Clinical Center of Resuscitation and Rehabilitation

2. Federal Scientific and Clinical Center of Resuscitation and Rehabilitation; N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department

3. Russian Medical Academy of Continuing Professional Education

4. N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department

5. State Scientific Center of the Russian Federation Institute of Biomedical Issues of the Russian Academy of Sciences

6. Federal Scientific and Clinical Center of Resuscitation and Rehabilitation;N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department

7. Federal Scientific and Clinical Center of Resuscitation and Rehabilitation; Peoples’ Friendship University of Russia

Abstract

Background. The syndrome of systemic inflammatory response, which underlies the damaging effect of factors of infectious and non-infectious genesis, may cause multiple organ failure. The degree of its severity is determined, among other things, by the activation of neutrophils. The paper highlights new mechanisms of the anti-inflammatory action of the inhalation anesthetic xenon, mediated by a decrease in the ability of neutrophils to pro-inflammatory response.Aim of study. To evaluate the effect of xenon on the activation of human neutrophils under ex vivo conditions.Material AND methods. We studied the effect of xenon inhalation on reduction of the ability of neutrophils to be activated proinflammatory by reduced expression of adhesion molecules CD11b and CD66b on the surface of neutrophils and on the phosphorylation of proinflammatory kinases: ERK 1/2 and kinase — p38 in neutrophils of healthy volunteers.Results. The use of xenon at a dose of 30 vol. % within 60 minutes in healthy volunteers statistically significantly reduces the ability of neutrophils to proinflammatory activation. The addition of lipopolysaccharide (LPS) to the incubation medium of neutrophils causes their pronounced activation, statistically significantly increasing the phosphorylation of key proinflammatory neutrophil kinases ERK1/2 and kinase p38. Inhalation of xenon in volunteers (30% within 60 minutes) has a pronounced anti-inflammatory effect on LPS-stimulated neutrophils, decreasing their activation by inhibiting pro-inflammatory kinase ERK1/2 and pro-inflammatory MAP kinase p38.Conclusion. The actual study, performed on isolated neutrophils from volunteers who underwent xenon inhalation, revealed the anti-inflammatory properties of the inert gas xenon, which, in our opinion, may have a direct relationship to the identification of the mechanism of its neuroprotective properties. Thus, the research results available today suggest that xenon has a pronounced pleiotropic mechanism of brain protection. This is a partial blockade of NMDA receptors, and phosphorylation of the enzyme glycogen synthase-3β, and limitation of the inflammatory activation of neutrophils.Findings. Inhalation of xenon in volunteers (30% within 60 minutes) has a pronounced anti-inflammatory effect on neutrophils stimulated by lipopolysaccharides, decreasing their activation by inhibiting proinflammatory ERK 1/2 kinase and proinflammatory MAP kinase p38, as well as reducing the expression of markers of activation and degranulation CD11b and CD66b on the surface of neutrophils. Stimulation by lipopolysaccharides statistically significantly reduces spontaneous apoptosis of neutrophils, while xenon increases the ability of neutrophils to apoptosis, which is likely to contribute to the resolution of inflammation.

Publisher

The Scientific and Practical Society of Emergency Medicine Physicians

Subject

Emergency Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3