Lack of Overt FGF21 Resistance in Two Mouse Models of Obesity and Insulin Resistance

Author:

Hale Clarence1,Chen Michelle M.1,Stanislaus Shanaka1,Chinookoswong Narumol1,Hager Todd2,Wang Minghan1,Véniant Murielle M.1,Xu Jing1

Affiliation:

1. Departments of Metabolic Disorders (C.H., M.M.C., S.S., N.C., M.W., M.M.V., J.X.), Thousand Oaks, California 91320

2. Pharmacokinetics and Drug Metabolism (T.H.), Amgen Inc., Thousand Oaks, California 91320

Abstract

Circulating levels of fibroblast growth factor 21 (FGF21), a metabolic regulator of glucose, lipid, and energy homeostasis, are elevated in obese diabetic subjects, raising questions about potential FGF21 resistance. Here we report tissue expression changes in FGF21 and its receptor components, and we describe the target-organ and whole-body responses to FGF21 in ob/ob and diet-induced obese (DIO) mice. Plasma FGF21 concentrations were elevated 8- and 16-fold in DIO and ob/ob mice, respectively, paralleling a dramatic increase in hepatic FGF21 mRNA expression. Concurrently, expression levels of βKlotho, FGF receptor (FGFR)-1c, and FGFR2c were markedly down-regulated in the white adipose tissues (WAT) of ob/ob and DIO mice. However, dose-response curves of recombinant human FGF21 (rhFGF21) stimulation of ERK phosphorylation in the liver and WAT were not right shifted in disease models, although the magnitude of induction in ERK phosphorylation was partially attenuated in DIO mice. Whole-body metabolic responses were preserved in ob/ob and DIO mice, with disease models being more sensitive and responsive than lean mice to the glucose-lowering and weight-loss effects of rhFGF21. Endogenous FGF21 levels, although elevated in diseased mice, were below the half-maximal effective concentrations of rhFGF21, suggesting a state of relative deficiency. Hepatic and WAT FGF21 mRNA expression levels declined after rhFGF21 treatment in the absence of the increased expression levels of βKlotho and FGFR. We conclude that overt FGF21 resistance was not evident in the disease models, and increased hepatic FGF21 expression as a result of local metabolic changes is likely a major cause of elevated circulating FGF21 levels.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3