Insulin Up-Regulates Heme Oxygenase-1 Expression in 3T3-L1 Adipocytes via PI3-Kinase- and PKC-Dependent Pathways and Heme Oxygenase-1–Associated MicroRNA Downregulation

Author:

Chang Chih-Ling1,Au Lo-Chun2,Huang Seng-Wong32,Fai Kwok Ching45,Ho Low-Tone1452,Juan Chi-Chang126

Affiliation:

1. Department of Physiology (C.L.C., L.T.H., C.C.J.), School of Medicine, National Yang-Ming University, Taiwan

2. Department of Medicine, and Department of Medical Research and Education (L.C.A., S.W.H., L.T.H., C.C.J.), Taipei Veterans General Hospital, Taipei 10341, Taiwan

3. Surgery (S.W.H.), School of Medicine, National Yang-Ming University, Taiwan

4. Faculty of Medicine (C.F.K., L.T.H.), School of Medicine, National Yang-Ming University, Taiwan

5. Division of Endocrinology and Metabolism (C.F.K., L.T.H.), Taipei Veterans General Hospital, Taipei 10341, Taiwan

6. Department of Education and Research (C.C.J.), Taipei City Hospital, Taipei 10341, Taiwan

Abstract

AbstractHeme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has antioxidant, antiinflammatory, and antiapoptotic effects in many physiological systems. HO-1 activity in obese mice is lower than in controls, and a sustained increase in HO-1 protein levels ameliorates insulin resistance and compensatory hyperinsulinemia. In the present study, we explored the regulatory effect of insulin on HO-1 expression in 3T3-L1 adipocytes and the underlying mechanism. We investigated the time- and dose-effect of insulin on HO-1 expression in 3T3-L1 adipocytes. Using specific inhibitors acting on insulin signaling pathways, we clarified the involvement of insulin downstream signaling molecules in insulin-regulated HO-1 expression. We also investigated the involvement of microRNAs (miRNAs) in insulin-regulated HO-1 expression using microarray and real-time RT-PCR assays. In an in vivo study, we performed insulin/glucose coinfusion in rats to increase circulating insulin levels for 8 h, then measured adipocyte HO-1 expression. Insulin caused a significant increase in HO-1 expression that was time- and dose-dependent, and this effect was blocked by inhibition of phosphatidylinositol 3 (PI3)-kinase activation using LY294002 (50 μM) or of protein kinase C activation using Ro-318220 (2 μM), but not by an Akt inhibitor, triciribine (10 μM). Furthermore, incubation of 3T3-L1 adipocytes with 100 nm insulin resulted in a significant decrease in levels of the miRNAs mir-155, mir-183, and mir-872, and this effect was also blocked by pretreatment with LY294002 or Ro-318220, but not triciribine. An in vivo study in rats showed that 8 h of a hyperinsulinemic euglycemic state resulted in a significant increase in adipocyte HO-1 expression. In conclusion, insulin increases HO-1 protein expression in 3T3-L1 adipocytes via PI3-kinase and protein kinase C-dependent pathways and miRNAs down-regulation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3