Penetration of Dexamethasone into Brain Glucocorticoid Targets Is Enhanced in mdr1A P-Glycoprotein Knockout Mice*

Author:

Meijer O. C.1,de Lange E. C. M.2,Breimer D. D.2,de Boer A. G.2,Workel J. O.1,de Kloet E. R.1

Affiliation:

1. Division of Medical Pharmacology (O.C.M., J.O.W., E.R.d.K.), of the Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands

2. Division of Pharmacology (E.C.M.d.L., D.D.B., A.G.d.B.) of the Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands

Abstract

Abstract Mice with a genetic disruption of the multiple drug resistance (mdr1a) gene were used to examine the effect of the absence of its drug-transporting P-glycoprotein product from the blood-brain barrier on the distribution and cell nuclear uptake of[ 3H]-dexamethasone in the brain.[ 3H]-dexamethasone (4 μg/kg mouse) was administered sc to adrenalectomized mdr1a (−/−) and mdr1a (+/+) mice. One hour later, the mice were decapitated, and the radioactivity was measured in homogenates of cerebellum, blood, and liver following extraction of the radioactive steroid. The frontal brain was cut in sections for autoradiography. In the cerebellum of the mdr1a mutants, the amount of[ 3H]-dexamethasone relative to blood was about 5-fold higher than observed in the controls, whereas the ratio in blood vs. liver was not different. Using autoradiography, it was found that brain areas expressing the glucocorticoid receptor (GR) in high abundance, such as the hippocampal cell fields and the paraventricular nucleus (PVN), showed a 10-fold increase in cell nuclear uptake of radiolabeled steroid. The amount of retained steroid increased toward levels observed in the pituitary, which contains a similar density of GRs. The [3H]-dexamethasone concentration in pituitary was not affected by mdr1a gene disruption. The GR messenger RNA expression pattern in hippocampus was not different between the wild types and mdr1a mutants, which rules out altered receptor expression as a cause of the enhanced dexamethasone uptake. In conclusion, the present study demonstrates that the brain is resistant to penetration by dexamethasone because of mdr1a activity at the level of the blood-brain barrier. The data support the concept of a pituitary site of action of dexamethasone in blockade of stress-induced ACTH release. Dexamethasone poorly substitutes for depletion of the endogenous glucocorticoid from the brain and therefore, in this tissue, may cause a condition resembling that of adrenalectomy.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3