The Carboxyl-Terminal Region Is a Determinant for the Intracellular Behavior of the Chorionic Gonadotropin β Subunit: Effects on the Processing of the Asn-Linked Oligosaccharides

Author:

Muyan Mesut1,Boime Irving1

Affiliation:

1. Department of Molecular Biology & Pharmacology Washington University School of Medicine St. Louis, Missouri 63110

Abstract

Abstract The placental hormone human CG (hCG) consists of two noncovalently linked α- and β-subunits similar to the other glycoprotein hormones LH, FSH, and TSH. These heterodimers share a common α subunit but differ in their structurally distinct β subunits. The CGβ subunit is distinguished among the β subunits by the presence of a C-terminal extension with four serine-linked oligosaccharides (carboxyl terminal peptide or CTP). In previous studies we observed that deleting this sequence decreased assembly of the truncated CGβ subunit (CGβ114) with the α-subunit and increased the heterogeneity of the secreted forms of the uncombined subunit synthesized in transfected Chinese hamster ovary (CHO) cells. The latter result was attributed to alterations in the processing of the two N-linked oligosaccharides. To examine at what step this heterogeneity occurs, the CGβ and CGβ114 genes were transfected into wild-type and mutant CHO cell lines that are defective in the late steps of the N-linked carbohydrate-processing pathway. We show here that removal of the CTP alters the processing of the core mannosyl unit of the subunit to complex forms at both glycosylation sites and that the oligosaccharides contain polylactosamine. Although it has been presumed that there is little intramolecular interaction between the CTP and the proximal domains of the subunit, our data suggest that the CTP sequence participates in the folding of the newly synthesized subunit, which is manifest by the posttranslational changes observed here.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3